Soil may harbor answer to reducing arsenic in rice

May 1, 2013 under CANR News

Drs. Harsh Bias & Janine Sherrier work together with bacteria resistant rice plants at the Greenhouse.Harsh Bais and Janine Sherrier of the University of Delaware’s Department of Plant and Soil Sciences are studying whether a naturally occurring soil bacterium, referred to as UD1023 because it was first characterized at the University, can create an iron barrier in rice roots that reduces arsenic uptake.

Rice, grown as a staple food for a large portion of the world’s population, absorbs arsenic from the environment and transfers it to the grain. Arsenic is classified as a poison by the National Institutes of Health and is considered a carcinogen by the National Toxicology Program.

Long-term exposure to arsenic has been associated with skin, lung, bladder, liver, kidney and prostate cancers, and low levels can cause skin lesions, diarrhea and other symptoms.

The risks of arsenic in rice were recently highlighted in the national press, when arsenic was detected in baby foods made from rice. In regions of the world where rice is the major component of the human diet, the health of entire communities of people can be negatively impacted by arsenic contamination of rice.

Arsenic may occur naturally in the soil, as it does in many parts of Southeast Asia, or it may be a result of environmental contamination. Despite the health risks arsenic in rice poses to millions of people around the world, there are currently no effective agricultural methods in use to reduce arsenic levels.

Sherrier, professor, and Bais, associate professor, are investigating whether UD1023 — which is naturally found in the rhizosphere, the layer of soil and microbes adjacent to rice roots — can be used to block the arsenic uptake. Bais first identified the bacterial species in soil samples taken from rice fields in California.

The pair’s preliminary research has shown that UD1023 can mobilize iron from the soil and slow arsenic uptake in rice roots, but the researchers have not yet determined exactly how this process works and whether it will lead to reduced levels of arsenic in rice grains.

“We have a bacterium that moves iron, and we want to see if creating an iron shield around the rice roots will slow arsenic movement into other parts of the plant,” Bais said.

Sherrier and Bais, who received a 2012 seed grant for the project from Delaware’s National Science Foundation Experimental Program to Stimulate Competitive Research (EPSCoR), ultimately want to determine how UD1023 slows arsenic movement into rice roots and whether it will lead to reduced levels of arsenic in the rice grains, the edible portion of the plant.

“That is the most important part,” Bais said. “We don’t know yet whether we can reduce arsenic in the grains or reduce the upward movement of arsenic towards the grain, but we’re optimistic.”

Bais says that, if successful, the project could lead to practical applications in agriculture.

“The implications could be tremendous,” he said. “Coating seeds with bacteria is very easy. With this bacteria, you could implement easy, low-cost strategies that farmers could use that would reduce arsenic in the human food chain.”

Article by Juan C. Guerrero

Photo by Kathy F. Atkinson

This article can also be viewed on UDaily.

Share

Harsh Bais featured in “The Scientist” magazine

January 3, 2013 under Spotlight on Success

Harsh Bais, associate professor in the Department of Plant and Soil Sciences, has been featured in “The Scientist” magazine for his work with beneficial microbes.

The study featured in the article takes a look at how plants rely on bacteria and fungi for health and defense, and how plant biologists are starting to look at ways in which they can use beneficial soil microbes to aid plants as a sort of vaccine.

Bais is quoted in the article as explaining “The idea is that we can reduce pesticide and fungicide use by utilizing the microbiome. But we need to know more about the mechanisms of action; relationships between microbes and plants are very complex.”

To read the full article on the Scientist website, click here.

Share

Researchers reveal the ‘dark side’ of beneficial soil bacteria

September 21, 2012 under CANR News

It’s a battleground down there — in the soil where plants and bacteria dwell.

Even though beneficial root bacteria come to the rescue when a plant is being attacked by pathogens, there’s a dark side to the relationship between the plant and its white knight.

According to research reported by a University of Delaware scientific team in the September online edition of Plant Physiology, the most highly cited plant journal, a power struggle ensues as the plant and the “good” bacteria vie over who will control the plant’s immune system.

“For the brief period when the beneficial soil bacterium Bacillus subtilis is associated with the plant, the bacterium hijacks the plant’s immune system,” says Harsh Bais, assistant professor of plant and soil sciences, whose laboratory group led the research at the Delaware Biotechnology Institute.

In studies of microbe-associated molecular patterns (MAMPs), a hot area of plant research, the UD team found that B. subtilis produces a small antimicrobial protein that suppresses the root defense response momentarily in the lab plant Arabidopsis.

“It’s the first time we’ve shown classically how suppression by a benign bacteria works,” Bais says. “There are shades of gray — the bacteria that we view as beneficial don’t always work toward helping plants.”

In the past, Bais’ lab has shown that plants under aerial attack send an SOS message, through secretions of the chemical compound malate, to recruit the beneficial B. subtilis to come help.

In more recent work, Bais and his collaborators showed that MAMP perception of pathogens at the leaf level could trigger a similar response in plants. Through an intraplant, long-distance signaling, from root to shoot, beneficial bacteria are recruited to forge a system-wide defense, boosting the plant’s immune system, the team demonstrated. In that study, the Bais team also questioned the overall tradeoffs involved in plants that are associated with so-called beneficial microbes.

In the latest work, involving the testing of more than 1,000 plants, the researchers shed more light on the relationship. They show that B. subtilis uses a secreted peptide to suppress the immune response in plants. It is known that plants synthesize several antimicrobial compounds to ward off bacteria, Bais says.

The team also shows that when plant leaves were treated with a foliar MAMP — flagellin, a structural protein in the flagellum, the tail-like appendage that bacteria use like a propeller — it triggered the recruitment of beneficial bacteria to the plant roots.

“The ability of beneficial bacteria to suppress plant immunity may facilitate efficient colonization of rhizobacteria on the roots,” Bais says. Rhizobacteria form an important symbiotic relationship with the plant, fostering its growth by converting nitrogen in the air into a nutrient form the plant can use.

“We don’t know how long beneficial bacteria could suppress the plant immune response, but we do know there is a very strong warfare under way underground,” Bais says, noting that his lab is continuing to explore these interesting questions. “We are just beginning to understand this interaction between plants and beneficial soil bacteria.”

The lead author of the research article was Venkatachalam Lakshmanan, a postdoctoral researcher in the Department of Plant and Soil Sciences; Sherry Kitto, professor of plant and soil sciences; Jeffrey Caplan, associate director of UD’s Bio-Imaging Center; Yu-Sung Wu, director of the Protein Production Facility; Daniel B. Kearns, associate professor in the Department of Biology at Indiana University; and Yi-Huang Hsueh , of the Graduate School of Biotechnology and Bioengineering at Yuan Ze University, Taiwan.

The research was supported by grants from the National Science Foundation.

Article by Tracey Bryant

Animation and images courtesy of Harsh Bais

This article can also be viewed on UDaily.

Share

UD researchers show how beneficial soil bacteria can boost plant immunity

August 29, 2012 under CANR News

With the help of beneficial bacteria, plants can slam the door when disease pathogens come knocking, University of Delaware researchers have discovered.

A scientific team under the leadership of Harsh Bais, assistant professor of plant and soil sciences in UD’s College of Agriculture and Natural Resources, found that when pathogens attempt to invade a plant through the tiny open pores in its leaves, a surprising ally comes to the rescue. Soil bacteria at the plant’s roots signal the leaf pores to close, thwarting infection.

The fascinating defense response is documented in video and micrographs of live plants taken by confocal and scanning electron microscopes at UD’s Bio-Imaging Center at the Delaware Biotechnology Institute.

The research, which explored the interaction between the soil bacterium Bacillus subtilis and the laboratory plant Arabidopsis thaliana, is published in the August issue of The Plant Journal. The findings underscore both the importance of root-based processes in plant defense and the potential for bolstering plant immunity naturally through the emerging field of probiotics.

Postdoctoral researcher Amutha Sampath Kumar is the lead author of the journal article. In addition to Bais, the co-authors include postdoctoral researcher Venkatachalam Lakshmanan, researchers Jeffrey L. Caplan, Deborah Powell and Kirk J. Czymmek of UD’s Bio-Imaging Center, and Delphis F. Levia, associate professor of geography. The National Science Foundation, University of Delaware Research Foundation and Delaware Experimental Program to Stimulate Competitive Research (EPSCoR) provided funding for the study.

Millions of stomata, consisting of microscopic pores surrounded by guard cells, cover the above-ground parts of plants, from the stems to the flower petals. The pores resemble tiny mouths, or doors, which the guard cells open and close to allow carbon dioxide, oxygen, water and minerals in and out of the plant.

Pathogens also can slip through these stomata and begin infecting the plant. However, as Bais’s team confirmed, this invasion is halted when the beneficial bacterium Bacillus subtilis is present in the soil where the plant is rooted. The finding was based on tests of approximately 3,000 Arabidopsis plants inoculated with the foliar pathogenPseudomonas syringae pathovar tomato DC3000 (PstDC3000) during a year-long period.

When a foliar pathogen attacks, as shown in previous research by Bais and his group, the plant recruits Bacillus subtilis to help and facilitates its multiplication. The Bacillus subtilisbacteria bind to the plant’s roots and invoke abscisic acid and salicylic acid signaling pathways to close the stomata.

Abscisic acid and salicylic acid are both important hormones involved in plant defense. When a plant encounters adverse environmental conditions, such as drought, for example, abscisic acid triggers the stomata to shut tightly to prevent the plant from dehydrating.

In addition to ramping up plant disease resistance, the use of this rhizobacteria to promote drought tolerance in plants could be a very promising avenue, Bais notes.

“Many bacterial pathogens invade plants primarily through stomata on the leaf surface,” Bais says. “But how do plants fight off infection? In our studies of the whole plant, we see this active enlistment by Bacillus subtilis, from root to shoot.”

Strikingly, the research team’s data revealed that of different root-associated soil bacteria tested, only Bacillus species were effective in closing the stomata and for a prolonged period.

“We know only 1 to 5 percent of what this bug Bacillus subtilis can do, but the potential is exciting,” Bais notes, pointing out that there is increasing commercial interest in inoculating crop seeds with beneficial bacteria to reduce pathogen infection. “Just as you can boost your immune system, plants also could be supercharged for immunity.”

Article by Tracey Bryant

Photo by Ambre Alexander

This article can also be viewed on UDaily.

Share

Prestigious travel grants allow UD students to attend plant biology conference

March 30, 2012 under CANR News

Harsh Bais, assistant professor in the University of Delaware Department of Plant and Soil Sciences, has chosen his research team well. Two members of his group, postdoctoral researcher Venkatachalam Lakshmanan and graduate student Emily Alff, have received travel grants from the American Society of Plant Biologists (ASPB), which will enable them to attend the society’s annual meeting this summer in Austin, Texas.

According to Bais, the number of ASPB travel grants is limited to 20 for postdocs and 30 for graduate students worldwide.

Alff received the ASPB travel grant for her project that explores the role of rhizobacteria in rice growth promotion and defense against the fungus Magnaporthe oryzae, commonly known as rice blast.

Her research examines the natural relationships between rice plants and the microbial communities that inhabit the rhizosphere, the area surrounding their root systems. Secretions from the root system are rich in nutrients, which sustain microbial communities that can be detrimental or beneficial to the plant.

Rice blast can cause devastating crop losses, but Alff’s research has demonstrated that certain bacteria can significantly decrease the effects of rice blast and improve plant growth. The goal of the project is to provide a basis for inoculating seeds with beneficial microbes, which is cost-effective for farmers and more environmentally sound than fungicides.

Lakshmanan’s research was also selected for oral presentation in a “mini-symposium” on plant-microbe interactions as part of the conference. He studies microbe-associated molecular patterns, or MAMPs, which are responsible for triggering a plant’s immune response if it is attacked by a pathogen. This signaling process is well understood in response to foliar pathogens; however, the role of MAMPs in response to the belowground microbial community is largely unknown.

Lakshmanan’s project indicates that certain beneficial rhizobacteria are able to block MAMPs signaling and subdue an immune response from the plant, allowing them to colonize the plant’s root system. The bacteria are beneficial because they subsequently activate the plant’s immune response if it is attacked by another pathogen. Lakshmanan’s research is expected to expand the current understanding of intra-plant signaling and its relationship with microbial communities.

Awards for current research in the field, which affects many of today’s top issues, will be presented at the Plant Biology conference. Alff is eager to see how it will play out.

“It is extremely important to me to see the impact that plant biology research is making towards the vital issues of food security and safety, climate change, bioenergy, and medicine,” she said.

Lakshmanan sees the plant biology symposium as “a unique opportunity to network and receive feedback from peers.” At the conference, Alff and Lakshmanan will present and discuss their research with plant biology faculty, postdocs and students from around the country.

Alff says, “This meeting will help in my transition from a graduate student to a professional scientist. Receiving feedback from the plant biology community will help in preparation for my thesis defense and eventual job interviews.”

The research conducted by Alff and Lakshmanan in Bais’ lab is supported by grants from the National Science Foundation and the Delaware EPSCoR program.

Article by Jacob Crum

Photo of Emily Alff by Kathy F. Atkinson

This article can also be viewed on UDaily

Share

Delaware EPSCoR announces 2012 seed grant recipients

March 7, 2012 under CANR News

The Delaware EPSCoR program has awarded seven seed grants to University of Delaware faculty whose projects address current environmental issues within the state.

EPSCoR, the Experimental Program to Stimulate Competitive Research, is a federal grant program of the National Science Foundation (NSF) that helps states develop their research capabilities so that they may compete for further federal funding.

Seed grants are typically in the $50,000 range and help researchers set the stage for applications to larger federal funding programs. Seed grant proposals are solicited annually during the fall semester. The selections were made by a committee of five senior faculty affiliated with the Delaware EPSCoR program and two external reviewers representing the Delaware Department of Natural Resources and Environmental Control (DNREC). This year’s funded projects are as follows:

Microbes that remove arsenic from rice

Rice is a staple in diets across the globe, but it is commonly contaminated by arsenic (As) in many developing nations. To solve this problem, University of Delaware scientists Harsh Bais and Janine Sherrier of the Department of Plant and Soil Sciences have proposed that the inoculation of rice with the bacterium EA106 will reduce arsenic accumulation within the edible portion of the plant, simultaneously improving quality and yield. Arsenic-contaminated rice represents a significant health risk to millions of people worldwide; in their research Bais and Sherrier plan to “systematically dissect the overall mechanism in As absorption and translocation in rice.” Their efforts will further probe the field of plant-microbial processes and how they may be used to agricultural advantage.

Impact of terrestrial phosphorus on eutrophication in the Chesapeake Bay

Principal investigator Deb Jaisi, assistant professor, and Donald Sparks, S. Hallock du Pont Chair of Soil and Environmental Chemistry, both of the Department of Plant and Soil Sciences, will investigate the concentrations of terrestrial and nonterrestrial phosphorus (P) input into the Chesapeake Bay over time. The prevailing notion is that the level of nonterrestrial P has remained constant since early civilization, and thus terrestrial P is the sole culprit in the eutrophication (increased concentrations of nutrients which result in algae blooms and fish kills) of the Chesapeake Bay. However, observed changes in the bottom water environment indicate that this is unlikely. Their study will influence future management strategies to limit nutrient pollution, with regulations possibly addressing both terrestrial and nonterrestrial P input. Sparks is director of the Delaware Environmental Institute.

Article by Jacob Crum

Photos by Ambre Alexander and Kathy F. Atkinson

For the complete article and list of seed grant recipients, view the full story on UDaily

Share

Students battle rice blast disease with underground microbes

November 30, 2010 under CANR News

Rice is the most important grain consumed by humans, providing more than one-fifth of the calories sustaining the world’s population. By some estimates, however, global production of rice could feed an additional 60 million people, if it weren’t for rice blast disease, caused by the fungus Magnaporthe grisea.

This past summer, four students from the University of Delaware and two of its partner institutions in Delaware’s National Science Foundation EPSCoR program, Delaware State University and Delaware Technical and Community College, found themselves on the front lines of the battle to defeat rice blast.

Those battle lines have been drawn on opposite coasts of the United States, through a collaboration between scientists in Delaware and at the University of California at Davis, the land-grant institution of the UC system. The students therefore split their summer internship between laboratories in both states.

The project is led by Harsh Bais, professor in UD’s Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, and is funded by the National Science Foundation.

The full article with photos can be viewed online on UDaily by clicking here.

Article courtesy of Beth Chajes, DENIN

Share

EPSCoR seed grants awarded for environmental research

January 7, 2010 under CANR News

The Delaware EPSCoR office has awarded three seed grants to investigators whose projects address environmental challenges in Delaware.  CANR faculty members among researchers awarded. 

Click here for the full story on UDaily.

Share

Phragmites partners with microbes to plot native plants’ demise

January 4, 2010 under CANR News

UD researchers led by Harsh Bais, assistant professor of plant and soil sciences, have uncovered a novel means of conquest employed by the common reed, Phragmites australis, which ranks as one of the world’s most invasive plants.  Visit UDaily for the full story.

Share