Vegetable Crops

Vegetable Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Cucumbers
Cucumber beetles continue to be active so be sure to scout for beetles as well as aphids. Fresh market cucumbers are susceptible to bacterial wilt, so treatments should be applied before beetles feed extensively on cotyledons and the first true leaves. Although pickling cucumbers have a tolerance to wilt, a treatment may still be needed for machine-harvested pickling cucumbers when 5% of plants are infested with beetles and/or plants are showing fresh feeding injury. A treatment should be applied for aphids if 10 to 20 percent of the plants are infested with aphids with 5 or more aphids per leaf.

Melons
Continue to scout all melons for aphids, cucumber beetles, and spider mites. The treatment threshold for aphids is 20% infested plants with at least 5 aphids per leaf. We continue to find fields with spider mites at economic levels. The threshold for mites is 20-30% infested crowns with 1-2 mites per leaf. Cucumber beetles continue to be an economic problem. Since beetles can continue to re-infest fields as well as hide under the plastic, be sure to check carefully for beetles as well as their feeding damage. Multiple applications are often needed to achieve effective control. Now that most fields are blooming, it is important to consider pollinators when making an insecticide application (http://extension.oregonstate.edu/catalog/pdf/pnw/pnw591.pdf).

Peppers
As soon as the first flowers can be found, be sure to consider a corn borer treatment. Depending on local corn borer trap catches, sprays should be applied on a 7 to 10-day schedule once pepper fruit is ¼ - ½ inch in diameter. Be sure to check local moth catches in your area by calling the Crop Pest Hotline (instate: 800-345-7544; out of state: 302-831-8851) or visiting our website at (http://ag.udel.edu/extension/IPM/traps/latestblt.html). You should also watch for an increase in aphid populations. A treatment may be needed prior to fruit set if you find 1-2 aphids per leaf for at least 2 consecutive weeks and beneficial activity is low.

Potatoes
Continue to scout fields for Colorado potato beetle (CPB), corn borers (ECB) and leafhoppers. Adult CPB as well as the small and large larvae can now be found. A treatment should be considered for adults when you find 25 beetles per 50 plants and defoliation has reached the 10% level. Once larvae are detected, the threshold is 4 small larvae per plant or 1.5 large larvae per plant. As a general guideline, controls should be applied for leafhoppers if you find ½ to one adult per sweep and/or one nymph per every 10 leaves.

Snap Beans
Continue to sample all seedling stage fields for
leafhopper and thrips activity. The thrips threshold is 5-6 per leaflet and the leafhopper threshold is 5 per sweep. If both insects are present, the threshold for each should be reduced by 1/3. In addition, continue to watch for bean leaf beetle. Damage appears as circular holes in leaves and significant defoliation can quickly occur. As a general guideline, a treatment should be considered if defoliation exceeds 20% prebloom. As a general guideline, once corn borer catches reach 2 per night, fresh market and processing snap beans in the bud to pin stages should be sprayed for corn borer. Sprays will be needed at the bud and pin stages on processing beans. Once pins are present on fresh market snap beans and corn borer trap catches are above 2 per night, a 7 to 10-day schedule should be maintained for corn borer control.

Sweet Corn
Continue to sample seedling stage fields for cutworms and flea beetles. You should also sample whorl through pre-tassel stage corn for corn borers and corn earworns. A treatment should be applied if 15% of the plants are infested with larvae. The first silk sprays will be needed for corn earworm as soon as ear shanks are visible. Be sure to check both black light and pheromone trap catches since the spray schedules can quickly change. Trap catches are generally updated on Tuesday and Friday mornings http://ag.udel.edu/extension/IPM/traps/latest butterflies.html and http://ag.udel.edu/extension/IPM/threshold/silk spray threshold.html. You can also call the Crop Pest Hotline for the most recent trap catches (in state: 800-345-7544; out of state: 302-831-8851)

Vegetable Replanting Decisions - Gordon Johnson, Extension Vegetable & Fruit Specialist; gcjohn@udel.edu

One of the most difficult decisions that vegetable growers and advisors have to make is when to replant vegetables with stand problems. Often we have little research base to go on in regard to these decisions and it becomes more of an educated guess. I have heard many anecdotes of fields with reduced stands that have yielded well.

There are many reasons for reduced stands - insects, birds, planter problems, soil crusting, herbicide damage, and seed quality problems to name just a few. Before you even consider replanting, make sure that you diagnose correctly what caused the stand reduction. If the problem is repeated you will have lost money twice.

A replanted field should have a high probability of increased yield potential compared to the stand being replaced. That yield increase needs to cover the cost of replanting (seed, herbicides, additional fertilizer, tillage, equipment costs, etc.) and any other opportunity costs such as lost potential for double cropping. Consider issues such as increased pesticide needs in later plantings (replanted sweet corn will often require more sprays for insect control for example). With processing vegetables, you need to work closely with the processor to see if rescheduling is possible. They may have already filled later acres or be beyond their cutoff dates for that crop for example. With fresh market vegetables, consider how replanting will affect your markets and the prices that will be obtained for later crops versus a partial early crop.

A major difficulty is evaluating the yield potential of the existing stand. This is further complicated in processing vegetables that are once-over harvested where stand variability may lead to difficulty in scheduling for peak quality. Where research on replanting vegetables is available for this region, use that as a guide. Crop insurance providers often have access to information on replant yields and should be consulted where crops are insured.

Many crops compensate well for lower populations. Lima beans are a good example. Stand reductions as much as 50 % result in little relative yield loss in lima beans. In general, vining crops and indeterminate crops compensate well for reduced stands as do crops that branch strongly. Some leafy vegetables such
as greens can also compensate for low stands by producing larger leaves. Bush type vegetables with limited branching, determinate types, and vegetables that produce one harvestable plant part per seed or transplant will be less able to compensate for stand reductions. Consider the variety also. For example, many sweet corn hybrids will produce a harvestable second ear at lower populations and thus will compensate for reduced stands.

Also consider the vegetable type. For example, supersweet sweet corn varieties have a wider harvest window than normal sugary types and therefore irregular corn stands with variability in maturity can still be harvested with not much tonnage loss. Consider how later replanted fields might be affected by heat or cold. Replanted snap beans exposed to summer heat will have reduced yields; in contrast, later planted lima beans may be exposed to cooler temperatures at flowering and have higher yield potentials.

There certainly will be times where replanting a vegetable field is necessary and replanting makes economic sense; however, more often than not you will make more money by taking the partial stand to harvest.

Cucurbit Downy Mildew Alert - Bob Mulrooney, Extension Plant Pathologist; bobmul@udel.edu

Cucurbit downy mildew has been reported on cucumbers in North Carolina (Wilson County). This is a very early detection for this area and a threat to Delmarva pickle production if weather conditions favor spore movement. I know this is early and the weather has been dry in most downstate areas but this is a very mobile disease. The disease forecast is showing that there is no current risk of spread to Delaware at this time but growers and fieldmen need to be vigilant. As in past years the Cucurbit Downy Mildew PIPE Forecast website will let you know where the disease is present. Visit the site at http://cdm.ipmpipe.org/.

In the past several years my fungicide research as well as that of Steve Rideout in VA has shown that spray programs that include Presidio (4 fl.oz/A) and Ranman (2.75 fl.oz/A) provide the best control. Previcur Flex (1.2 pt/A) has been very effective in the past but we are a little hesitant to wholeheartedly recommend it because our results were not as good as in past years. As a result growers should not rely on this product alone. These fungicides should be rotated/tank mixed with protectants containing mancozeb or chlorothalonil. Applications should be made before symptoms appear and apply on a 7 to 10-schedule. Good coverage is very important so apply the fungicides in at least 20 gallons/A, 30 would be better.
Stem Girdling in Peppers - Bob Mulrooney, Extension Plant Pathologist; bobmul@udel.edu

It’s the time of year when we sometimes see pepper transplants with the symptoms pictured below.

![Image of sunscald injury on pepper stems](image)

This is sunscald injury on the stems of newly transplanted pepper seedlings, which is caused by stems laying against edges of black plastic mulch on hot, sunny days. Note that secondary pathogens such as *Alternaria* can infest bleached out areas of stems over time.

Postemergence Broadleaf Weed Control in Lima Beans - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Postemergence broadleaf weed control in lima beans can be accomplished with Sandea, Raptor, or Basagran; and Reflex is labeled only for snap bean. Do not spray before the first trifoliate is fully expanded for all these products, except Sandea which requires at least two fully expanded trifoliates. All of these products should be applied before the beans have started to flower. These products are not effective on most weed species over 3 inches tall. So they need to be applied early (approximately 3 to 4 weeks after planting). Basagran will not effectively control pigweed.

Raptor is labeled for lima beans in Delaware and Maryland. The label requires the addition of Basagran at 6 to 16 fl oz/A to improve crop safety and minimize the yellowing in the young tissue. In addition, it is labeled for use with a non-ionic surfactant.

Postemergence grass control can be accomplished with Poast or Select Max. Select Max allows for the use of non-ionic surfactant in place of crop oil concentrate. Tankmixing either of these grass herbicides can result in an antagonism that reduces grass control. Finally, Select will not control goosegrass (see photos of goosegrass at VT website)

When you are cultivating, set your cultivator so that the field remains as level as possible. A level field will improve lima bean recovery at harvest time.

Remember there are biotypes of pigweed and common ragweed in the Mid-Atlantic region that are resistant to Sandea, Pursuit, and Raptor. If you are concerned about resistance, please contact me.

Cultivation and Postemergence Herbicide Treatment - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Questions have come in about whether to cultivate first or spray first for weed control. Keep a few things in mind. Weeds are easier to control when they are small but consider which option is going to be more effective when weeds get larger. Cultivation will control the weeds between the rows but not in the row. Those weeds in the row are the ones you need to base your decision on whether to spray first. More often than not, it is better to spray first, then cultivate. In addition, weeds not completely killed with cultivation are more difficult to control with herbicides. **Note this assumes that the herbicide is the right herbicide for the weed(s) in your field. The weeds that emerge after cultivation are going to be much smaller and have less impact on yield (if any impact at all). Setting your cultivator so it runs only 1 to 2 inches deep will slice through the weeds and not disrupt the herbicide layer from your preemergence herbicides. This, in turn, will limit the number of weeds that will emerge due to cultivation. It is recommended to wait a minimum of 5 to 7 days between herbicide treatment and cultivation.**
Potato Disease Advisory #7 - June 9, 2010 - Bob Mulrooney, Extension Plant Pathologist; bobmul@udel.edu

Disease Severity Value (DSV) Accumulation as of June 8, 2010 is as follows:

Location: Art and Keith Wicks Farm, Rt 9, Little Creek, Kent County.
Green row: May 6

<table>
<thead>
<tr>
<th>Date</th>
<th>LATE BLIGHT</th>
<th>EARLY BLIGHT</th>
<th>Spray Recs</th>
<th>Accumulated P-days*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/27-5/28</td>
<td>1</td>
<td>30</td>
<td>10-days</td>
<td>-</td>
</tr>
<tr>
<td>5/29-5/30</td>
<td>1</td>
<td>31</td>
<td>10-days</td>
<td>-</td>
</tr>
<tr>
<td>5/31</td>
<td>0</td>
<td>31</td>
<td>10-days</td>
<td>199</td>
</tr>
<tr>
<td>6/1</td>
<td>1</td>
<td>32</td>
<td>10-days</td>
<td>206</td>
</tr>
<tr>
<td>6/2</td>
<td>0</td>
<td>32</td>
<td>10-days</td>
<td>214</td>
</tr>
<tr>
<td>6/3-6/5</td>
<td>0</td>
<td>32</td>
<td>10-days</td>
<td>232</td>
</tr>
<tr>
<td>6/6-6/8</td>
<td>0</td>
<td>32</td>
<td>10-days</td>
<td>257</td>
</tr>
</tbody>
</table>

Maintain the recommended spray interval. At 300 P-days fungicide sprays will be needed to control early blight. This should occur this week. At this point weekly fungicide applications would be suggested. There have been no confirmed reports of late blight on potatoes in the region.

P days - We use the predictive model WISDOM to determine the first fungicide application for prevention of early blight as well. The model predicts the first seasonal rise in the number of spores of the early blight fungus based on the accumulation of 300 physiological days (a type of degree-day unit, referred to as P-days) from green row. To date, 257 P-days have accumulated at the site. Once 300 P-days have accumulated, the first fungicide for early blight control should be applied. This usually occurs when rows are touching.

If pink rot or leak is a concern and no pink rot fungicide was applied at planting consider applying one of the following when potatoes are nickel-sized and repeating 14 days later. Apply in as much water as possible (20-30 gal/A): Mefanoxam/chlorothalonil (Ridomil/Bravo) 2 lb/A, or Ridomil Gold/MZ 2.5 lb/A, or Ridomil Gold/Copper 2 lb/A. If Platinum/ Ridomil Gold was applied at planting the label allows one foliar application of one of those products at tuber initiation if conditions warrant.

The Spray Recs column in the table is also generated by the WISDOM software program. This recommendation combines the DSV accumulation for late blight as well as the P-day accumulations for early blight and computes a spray recommendation. This is presented as a guide only. Spray decisions should be made with local conditions in mind and this information can help to determine if disease conditions are favorable.

For specific fungicide recommendations, see the 2010 Delaware Commercial Vegetable Production Recommendations Book.
Agronomic Crops

Agronomic Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Alfalfa
Continue to sample for potato leafhoppers on a weekly basis. We are now finding adults and nymphs in fields. Although both life stages can damage alfalfa, the nymphs can cause damage very quickly. Once plants are yellow, yield loss has already occurred. The treatment thresholds are 20 per 100 sweeps on alfalfa 3 inches or less in height, 50 per 100 sweeps in 4-6 inch tall alfalfa and 100 per 100 sweeps in 7-11 inch tall alfalfa.

Field Corn
We have had a number of reports of cereal leaf beetle adults moving out of small grains and feeding on the edge of corn fields. Although we do not have any firm thresholds for this insect on corn, as a general guideline controls may be needed on corn for feeding damage if you find an average of 10 beetles per plant and 50% of the plants exhibit feeding damage. Last year I was asked about the potential for cereal leaf beetles to vector disease in corn. In the Midwest, it has been reported that the adult beetles is a vector of maize chlorotic mottle virus (MCMV) that causes corn lethal necrosis disease. Thresholds would be much lower if this disease is an issue. To date, we still are not aware of this occurring in Delaware; however, be sure to let us know if you find potential problems.

In checking fields this week, we have also seen a number of fields with stink bug damage to whorl stage corn. Fortunately, the damage has been minimal in most fields. In some cases, it has been thought to be herbicide injury and/or damage from wireworms. Please be sure to check the following link for pictures of damage http://www.ca.uky.edu/agcollege/plantpathology/extension/KPN%20Site%20Files/kpn_10/pn_10_0608.html

Soybeans
Be sure to sample seedling stage beans for bean leaf beetles, grasshoppers and thrips. We have seen an increase in bean leaf beetle feeding damage, although it has been generally lower compared to last season. With the warmer temperatures, be sure to watch for an increase in populations. As barley is harvested and soybeans are planted, these fields will be especially susceptible to attack by grasshoppers which can cause stand loss. If stand reductions are occurring from plant emergence to the second trifoliate, a treatment should be applied. Although no precise thresholds are available, a treatment maybe needed if you find one grasshopper per sweep and 30% defoliation from plant emergence through the pre-bloom stage. As a general guideline, a treatment may be needed for bean leaf beetle if you observe a 20 - 25% stand reduction and/or 2 beetles per plant from cotyledon to the second trifoliate stages. These treatment thresholds should be reduced if virus is present or you suspected virus the previous season.

As far as thrips, information from North Carolina indicates that “soybean thrips and other thrips species can feed and reproduce on the leaves and buds of soybean seedlings. Their feeding creates bleached-out lesions along the leaf veins and gives a silvery/bronzed appearance to the leaf surface when damage is severe. These insects are very small (less than 1/10 inch) and are torpedo shaped. While thrips always occur on soybean seedlings, it is only during outbreak years that they cause concern. In particular, during dry weather and on earlier planted full-season soybeans, thrips populations can explode when plants are growing slowly. Under these circumstances thrips injury will occasionally kill seedlings. Other stressors, such as nutrient deficiencies and herbicide injury, can add to thrips damage and cause plant loss.” Yellowing can occur from thrips but there are also a number of other factors that can cause yellowing, so it is important to scout fields to identify what is causing the yellowing. Although no precise thresholds are available, as a general guideline, treatment may be needed if you find 4-8 thrips per leaflet and plant damage is observed.
Wheat Disease Update - Bob Mulrooney, Extension Plant Pathologist; bobmul@udel.edu

With the dry weather, wheat is beginning to turn in most area of the state. It looks like scab will not be an issue this year. Leaf rust and stripe rust did appear, late for the most part, but should have minimal effect on yield if the wheat was not sprayed.

Check Soybeans for Manganese (Mn) Deficiency - Richard Taylor, Extension Agronomist; rtaylor@udel.edu

An interesting fact came up recently about the research retired Purdue University plant pathologist Don Huber has done linking glyphosate and reduced uptake of several nutrients in field crops. I found the notation that significantly lower tissue levels of the micronutrients manganese (Mn), zinc (Zn), and iron (Fe) are being taken up by the field crops he studied. In Delaware, we frequently see Mn deficiency symptoms on soybeans, especially on sandy soil or where the soil pH is maintained near neutral or above.

Just yesterday driving back from the University of Delaware Research and Education Center, I noticed Mn deficiency symptoms showing up in several fields. Manganese deficiency is characterized by dark green veins and light green (mild deficiency) to yellow (moderately severe deficiency) to white (severe deficiency) interveinal leaf tissue. The symptoms often are most severe on the most recently emerged leaves. Manganese deficiency symptoms are similar to the deficiency and toxicity symptoms of some of the other micronutrients.

Yield reductions can be avoided to a large degree by early diagnosis and treatment with foliar application of Mn. Multiple applications of foliar Mn may be needed especially when Mn deficiency is severe. If enough leaf area is present to absorb adequate Mn, a single application higher rate (1 to 2 lb Mn/acre) was shown to be effective by Virginia and North Carolina researchers. Ignoring or not catching the problem until later in the season can not only reduce yield potential but make a foliar application more difficult and possibly more expensive since driving over the soybeans may cause damage on drilled beans. You may need to treat early season symptoms several times since the leaf area available to absorb Mn is limited so always rescout treated fields to be sure Mn deficiency does not reappear after treatment.

Where the symptoms are widespread and moderate to severe, foliar Mn applied at 1 to 2 lbs Mn per acre can boost yields significantly. Since the crop is still in the vegetative stage, mild to moderate symptoms can be alleviated with a 0.5 lb Mn per acre foliar spray. Researchers in Delaware, Virginia, and North Carolina have shown that soybeans are very
responsive to foliar Mn especially when applied well before soybeans begin to bloom.

Even if you do not apply foliar Mn, you should be making note of which fields and where in the field symptoms occur so you can monitor these areas in the future. If wheat or barley are to be planted this fall, careful early monitoring will allow you to apply Mn to the small grains before they are severely injured by Mn deficiency. You should also note the areas so you can do soil testing to determine the underlying problem. Check to see if the native Mn concentration in the soil is too low or whether the soil pH is too high since the higher the pH the lower the availability of Mn in the soil. Also, any factor restricting root growth (compaction, drought, etc.) can aggravate Mn deficiency symptoms and should be corrected.

Dr. Joseph Heckman at Rutgers University is writing a series of articles on Mn deficiency in Rutgers Plant and Pest Advisory publication. These publications are available on the web through the Rutgers New Jersey Agricultural Experiment Station. A recent article (Vol. 16, No. 7, page 3) showed research Dr. Heckman conducted comparing manganese sulfate and chelated manganese and this article can be found at the following web address: http://njaes.rutgers.edu/pubs/plantandpestadvisory/2010/vc051210.pdf

Clean Out the Sprayer - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

I have had a number of fields this year that were injured from low rates of herbicide remaining in the tank from the previous application. Most of these situations occur when the spray is mostly sprayed out and rather than rinse out the tank, additional water is added with the thought that “the little amount that remains will be diluted enough”. In cases with a highly sensitive crop, and in combination with a translocated herbicide, severe injury can occur. Also, a crop that is developed to be resistant to one herbicide, does not make it resistant to all herbicides (i.e. Liberty Link is not resistant to glyphosate). When in doubt, clean out.

Liberty Link Soybeans Need Timely Sprays - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Although glufosinate and glyphosate may sound similar they are very different herbicides and we need to think of them differently. (Glufosinate is active ingredient in Ignite 280 and glyphosate is active ingredient in Roundup)

A few reminders for those growing Liberty Link soybeans:

- Ignite works best on hot sunny days
- Do not apply within 2 hrs of sundown
- Ignite will control a broad-spectrum of weeds, but is not very effective on larger weeds (applications should be made as weeds approach 4 inches in height)
- Ignite is not as effective on larger grasses (applications made to grasses over 6 inches may result in poor control)
- Two applications of 22 fl oz can be made OR a single application of 29 to 36 fl oz (do not exceed 44 fl oz/season)
- Apply with AMS
- Do not apply within 70 days of harvest
- Spray coverage is important for highest level of control

Postemergence Control of Glyphosate Resistant Horseweed - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Options for controlling horseweed resistant to glyphosate after the soybeans have emerged are very limited. Liberty Link soybeans are an exception, because Ignite 280 is fairly effective on horseweed (be sure to keep your rates up).

For non-Liberty Link soybeans the options are very limited. FirstRate or Classic are only effective on small, newly emerged seedlings. However, neither FirstRate nor Classic, will consistently kill large horseweed plants nor plants that were “burned off” and are recovering. These herbicides may provide some suppression, but results have been quite erratic the past few years. Horseweed plants are generally not very tolerant of shade and most soybeans will begin to canopy over the
horseweed and out-compete them. In most cases, I have recommended to not spray emerged horseweed plants with another herbicide. Rather, make postemergence applications of glyphosate based on need to control other weed species. Additional glyphosate applications will provide some suppression of horseweed and give the soybeans a chance to outcompete them.

Grain Marketing Highlights - Carl German, Extension Crops Marketing Specialist; clgerman@udel.edu

USDA Cuts Corn, Soybean, and Wheat Stocks

Ending stock projections for the ‘09/’10 and ‘10/’11 marketing years for U.S. corn, soybeans, and wheat were reduced in the June report from month ago levels. Soybean and wheat ending stock projections were in line with pre-report expectations. Corn ending stock estimates were lower than pre-report expectations.

Corn Analysis

U.S. corn ending stocks for the current marketing year are now estimated at 1.603 billion bushels, 135 million bushels less than the May estimate. The decline in the estimate for U.S. corn stocks is largely attributed to an increase in demand for ethanol use for both the ‘09/’10 and ‘10/’11 marketing years. The estimate for U.S. corn ending stocks for the ‘10/’11 marketing year was lowered 45 million bushels from the previous month, now projected at 1.573 billion bushels. USDA raised their season average farm price estimate for ‘10/’11 marketing year corn by 10 cents a bushel on both ends of the price range, now estimated at $3.30 to $3.90 per bushel. The season average price for ‘09/‘10 marketing year corn was estimated at $3.45 to $3.65 per bushel.

For the ‘09/‘10 marketing year the estimate for Brazilian corn production was lowered .5 MMT, now estimated at 53 million metric tons. The estimate for Argentina corn production was increased 1.5 MMT, now projected at 22.5 MMT. For the ‘10/‘11 marketing year, USDA is now projecting corn production for Argentina at 21 MMT and Brazil corn production at 51 MMT. World corn ending stock estimates were reduced from last month for both marketing years. World corn ending stocks are now projected at 147.32 million metric tons (a reduction of 6.89 MMT) for the ‘10/‘11 marketing year and 143.41 MMT (3.63 MMT less than last month) for the ‘09/‘10 marketing year.

Soybean analysis

U.S. soybean ending stocks for the ‘09/‘10 marketing year were reduced 5 million bushels from last month, now estimated at 185 million bushels. That reduction was carried forward into the ‘10/‘11 marketing year with ending stocks now estimated at 360 million bushels, as compared to 365 million bushels a month ago. The season average farm price for U.S. soybeans was reported at $9.50 per bushel for the ‘09/‘10 marketing year and left unchanged from last month’s estimate at $9.50 per bushel for the ‘10/‘11 marketing year.

The Brazilian soybean production estimate for the current marketing year was increased 1 MMT from last month, now projected at 69 MMT. The Argentine soybean production estimate was left unchanged from last month at 54 MMT for a combined total production of 123 MMT for the ‘09/‘10 marketing year. World ending stocks for soybeans were increased for both the ‘09/‘10 (from 63.76 MMT to 65.47 MMT) and ‘10/‘11 marketing years (from 66.09 to 66.99 MMT).

Wheat Analysis

U.S. all wheat ending stocks were reduced 20 million bushels for the current marketing year, now estimated at 930 million bushels. Ending stock projections for ‘10/‘11 marketing year wheat were reduced by 6 million bushels, now projected at 991 million bushels. The season average farm price for U.S. wheat was reduced by 10 cents per bushel on the low end and 30 cents per bushel on the high end of the price range for ‘10/‘11 marketing year wheat. The season average farm price for the ‘09/‘10 marketing year was reported at $4.85 per bushel.

Canadian and Australian wheat production estimates were left unchanged from last month at 26.5 and 22.5 MMT for the current marketing year and 24.5 and 22 MMT, respectively, for the ‘10/‘11 marketing year. The estimates for world wheat ending stocks were reduced for both marketing years. World ending stocks for ‘09/‘10 marketing year wheat are now estimated at...
192.9 MMT, .47 MMT less than last month. World ending stocks for all wheat for the ’10/’11 marketing year are now projected at 193.93 MMT, 4.16 MMT less than last month’s estimate.

Marketing Strategy
The June supply and demand report can be viewed as bullish for corn, bullish old crop soybeans, bearish new crop soybeans, and bearish for wheat. However, commodity traders are not likely to pay much attention to this report due to outside market forces, the weather, and the soon to be released June 30 Planted Acreage report which could increase acreage and yield estimates for 2010 corn and soybean production. Currently, new crop Dec ’10 corn futures are trading at $3.61; Nov ’10 soybean futures at $8.91; and July SRW wheat at $4.31 per bushel. Nearby old crop July corn futures are trading at $3.41; and July ’10 soybean futures are trading at $9.32 per bushel. The nearby U.S. dollar index is at 87.18; nearby crude at $74.38; and the Dow is trading at 10,095.

For technical assistance on making grain marketing decisions contact Carl L. German, Extension Crops Marketing Specialist.

Announcements

2010 Weed Science Field Day
Wednesday, June 23, 2010 8:30 a.m.
Carvel Research & Education Center
16483 County Seat Hwy
Georgetown, DE 19947

The day will begin with registration at 8:30 a.m. at the Grove near the farm buildings and new office building on the north side of the road. We will start to view the plots at 9:00 am. Coffee, juices, and donuts will be provided. We will also provide sandwiches for lunch.

Weather Summary
Carvel Research and Education Center Georgetown, DE

Week of June 3 to June 9, 2010

Readings Taken from Midnight to Midnight

<table>
<thead>
<tr>
<th>Rainfall:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No rainfall recorded</td>
</tr>
</tbody>
</table>

| Air Temperature: |
| Highs ranged from 91°F on June 5 to 72°F on June 9. |
| Lows ranged from 75°F on June 5 to 56°F on June 8. |

| Soil Temperature: |
| 82.6°F average |

Additional Delaware weather data is available at http://www.deos.udel.edu/monthly_retrieval.html and http://www.rec.udel.edu/TopLevel/Weather.htm

Weekly Crop Update is compiled and edited by Emmalea Ernest, Extension Associate - Vegetable Crops

Cooperative Extension Education in Agriculture and Home Economics, University of Delaware, Delaware State University and the United States Department of Agriculture cooperating. Distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Delaware Cooperative Extension, University of Delaware. It is the policy of the Delaware Cooperative Extension System that no person shall be subjected to discrimination on the grounds of race, color, sex, disability, age or national origin.